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Abstract. Approximation is central to many optimization problems and the supporting theory pro-
vides insight as well as foundation for algorithms. In this paper, we lay out a broad framework for
quantifying approximations by viewing finite- and infinite-dimensional constrained minimization prob-
lems as instances of extended real-valued lower semicontinuous functions defined on a general metric
space. Since the Attouch-Wets distance between such functions quantifies epi-convergence, we are able
to obtain estimates of optimal solutions and optimal values through estimates of that distance. In par-
ticular, we show that near-optimal and near-feasible solutions are effectively Lipschitz continuous with
modulus one in this distance. We construct a general class of approximations of extended real-valued
lower semicontinuous functions that can be made arbitrarily accurate and that involve only a finite
number of parameters under additional assumptions on the underlying metric space.
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1 Introduction

Solutions of many optimization problems are inaccessible by direct means and one is forced to settle for

solutions of approximate problems. A central challenge is then to ensure that solutions of approximate

problems are indeed approximate solutions of the original problems. Moreover, the degree of approx-

imation becomes theoretically and practically important. The subject has been studied extensively;

see, e.g., [17, 1, 23, 24] for foundations and [14, 25] for applications in machine learning and stochastic

optimization. In this paper, we quantify the error in optimal values, optimal solutions, near-optimal

solutions, and near-optimal near-feasible solutions for approximate problems defined on general metric

spaces. In particular, we obtain a sharp Lipschitz-stability result for near-optimal solutions with a

Lipschitz modulus of 1. We also construct a class of “elementary” functions called epi-splines that are

given by a finite number of parameters, but still approximate to an arbitrary level of accuracy any ex-

tended real-valued lower semicontinuous (lsc) functions defined on a separable metric space. Since such

lsc functions abstractly represent a large class of optimization problems, epi-splines therefore provide

fundamental approximations of such problems.
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The development relies heavily on set-convergence of epi-graphs, which goes back to the pioneering

work of Wijsman [32, 33] and Mosco [22], and was coined epi-convergence by Wets [31]. This notion of

convergence is the only natural choice for minimization problems as it guarantees the convergence of

optimal solutions and optimal values of approximate problems to those of a limiting problem. Quan-

tification of the distance between epi-graphs, which then leads to a quantification of epi-convergence, is

placed on a firm footing in [4, 2, 5] with the development of the Attouch-Wets (aw) distance; see also

[9, 11, 12, 10]. We follow these lines and especially those of [6, 7] that utilize such quantification as the

basis for solution estimates in minimization problems. In contrast to these two papers, which deal with

normed linear spaces, we consider general metric spaces. Also, our Lipschitz-stability result for near-

optimal solutions goes beyond that of [7] as it does not require convexity, and we consider near-optimal

near-feasible solutions. We refine the estimates of distances between epi-graphs in IRn provided by [24,

Chapter 7] and [29], and also make them applicable to general metric spaces. Approximations of lsc

functions on IRn by epi-splines is given by [27]. Here, we extend such approximations to lsc functions on

separable metric spaces and proper metric spaces, and also give rates of convergence, which are novel

even for IRn. We refer to [10] for a general treatment of topologies on collections of closed sets; see also

[1, 8, 24] for comprehensive descriptions of epi-convergence and its connections to variational analysis

broadly.

Our motivation for going beyond normed linear spaces, which is the setting of [5, 6, 7], derives from

emerging applications in nonparametric statistics, curve fitting, and stochastic processes that aim to

identify an optimal function according to some criterion. A class of functions over which such optimal

fitting might take place is the collection of lsc functions on IRn, often simply with n = 1; see [30, 26, 27]

for applications. The class of such lsc functions offers obvious modeling flexibility, which is important

to practitioners, but under the aw-distance the class is a proper metric space that fails to be linear [24,

Theorem 7.58]. Since it is proper, every closed ball in this metric space is compact and the existence of

solutions of such optimal fitting problems is more easily established. We observe that the metric given

to this class of lsc functions has the consequence that proximity of two functions implies closeness of

their minimizers. This property is often important in probability density estimation, where the focus

is on the modes of the density functions, i.e., the maximizers of the density functions. When fitting

cumulative distribution functions, the metric metrizes weak convergence [29]. In both of these cases

a reorientation towards upper semicontinuous functions instead of lsc functions is needed. In fact,

nearly every result in this paper can be stated in terms of extended real-valued upper semincontinuous

functions. However, we maintain the lsc perspective for simplicity.

There is an extensive literature on local stability of optimization problems under parametric per-

turbations; see for example [13, 16, 20, 19, 21, 18, 15] for a small collection of references. In contrast to

these local stability results, dealing with “small” perturbations of an optimization problem, we present

global results. That is, we give estimates of the distance between solutions of two problems that might

be arbitrarily far apart. The ability to estimate the solution of one problem from that of another rather

different problem is especially important in stochastic optimization, optimal control, and semi-infinite

programming, and their numerous applications, as there we might only be able to construct and solve

coarse approximations of the problem of interest.
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The paper is organized as follows. After the review of epi-convergence in Section 2, we proceed in

Section 3 with estimates of the aw-distance. Section 4 presents bounds on solution errors for optimiza-

tion problems. Section 5 defines epi-splines and discusses their approximation properties.

2 Background

Throughout, we let (X, d) be a metric space and lsc-fcns(X) := {f : X → IR : f lsc and f ̸≡ ∞},
where IR := IR ∪ {−∞,∞}. Thus, every f ∈ lsc-fcns(X) has a nonempty closed epi-graph epi f :=

{(x, x0) ∈ X×IR : f(x) ≤ x0}. For a nonempty closed B ⊆ X, we also write lsc-fcns(B) for the subset

of lsc-fcns(X) consisting of functions f with f(x) = ∞ for all x ̸∈ B. When considering X × IR, we use

the product metric d̄(x̄, ȳ) := max{d(x, y), |x0 − y0|} for x̄ = (x, x0) ∈ X × IR and ȳ = (y, y0) ∈ X × IR.

Let IN := {1, 2, ...}. Convergence is indicated by → regardless of type, with the being meaning clear

from the context.

We recall (see for example [1, 8, 24]) that fν : X → IR epi-converge to f : X → IR if and only if

for every xν → x, liminf fν(xν) ≥ f(x), and

for some xν → x, limsup fν(xν) ≤ f(x).

Epi-convergence neither implies nor is implied by pointwise convergence. Uniform convergence en-

sures epi-convergence, but fails to handle extended real-valued functions satisfactory—a necessity in

constrained optimization problems.

For f : X → IR, C ⊂ X, and ε ≥ 0, let inf f := inf{f(x) : x ∈ X}, infC f := inf{f(x) : x ∈ C},
argmin f := {x ∈ X : f(x) = inf f}, and ε- argmin f := {x ∈ X : f(x) ≤ inf f + ε}. It is well known
that epi-convergence ensures convergence of solutions of minimization problems (see for example [24,

Chapter 7] and [3, 1]):

2.1 Proposition (convergence of minimizers) Suppose that fν : X → IR epi-converges to f : X → IR.

Then,

limsup (inf fν) ≤ inf f.

Moreover, if xk ∈ argmin fνk and xk → x for some increasing subsequence {ν1, ν2, ...} ⊂ IN , then

x ∈ argmin f and limk→∞ inf fνk = inf f .

A strengthening of epi-convergence ensures the convergence of minima and approximation of mini-

mizers (see for example [28]).

2.2 Definition (tight epi-convergence) The functions fν : X → IR epi-converge tightly to f : X → IR

if they epi-converge to f and for all ε > 0, there exists a compact set Kε ⊆ X and an integer νε such

that

infKε f
ν ≤ inf fν + ε for all ν ≥ νε.

2.3 Proposition (convergence of infima) Suppose that fν : X → IR epi-converges to f : X → IR and

inf f is finite. Then, fν epi-converges tightly to f
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(i) if and only if inf fν → inf f ;

(ii) if and only if there exists a sequence εν ↘0 such that εν- argmin fν set-converges1 to argmin f .

Throughout, let x̃ ∈ X be fixed. The choice of x̃ can be made arbitrarily, but results might be sharper

if x̃ is somewhat near minimizers of functions of interest as the analysis relies on the intersection of

epi-graphs with Sρ := IBρ × [−ρ, ρ], where IBρ := IB(x̃, ρ) := {x ∈ X : d(x̃, x) ≤ ρ} and ρ ≥ 0. The

Attouch-Wets (aw) distance dl (given x̃) is defined for any f, g ∈ lsc-fcns(X) as

dl(f, g) :=

∫ ∞

0
dlρ(f, g)e

−ρdρ,

where the ρ-aw-distance, ρ ≥ 0, is given by

dlρ(f, g) := sup
{∣∣dist (x̄, epi f)− dist

(
x̄, epi g

)∣∣ : x̄ ∈ Sρ
}
,

with dist giving the usual point-to-set distance, which here is given by

dist
(
x̄, C̄

)
= inf

{
d̄(x̄, ȳ) : ȳ ∈ C̄

}
if C̄ ⊂ X × IR is nonempty and dist(x̄, ∅) = ∞.

This setup resembles that of [24, Section 7.I], but there X = IRn and the Euclidean distance is used on

IRn× IR. Generally, (lsc-fcns(X), dl) is a metric space [10, Section 3.1] that is complete whenever (X, d)

is complete [10, Theorem 3.1.3]. We conclude from [10, Theorem 3.1.7] that for fν , f ∈ lsc-fcns(X),

dl(fν , f) → 0 implies that fν epi-converges to f.

We recall that a metric space is proper if every closed ball in that space is compact. If (X, d) is proper,

then the converse also holds: fν epi-converges to f implies that dl(fν , f) → 0 (see [10, Theorem 3.1.7]

and [5, Theorem 4.2, Lemma 4.3], with the latter results being stated for IRn but their proofs carry over

to the case of proper metric spaces). In addition to X = IRn with the usual metric, (X, d) is proper

when X = lsc-fcns(IRn) and d = dl. In fact, (lsc-fcns(IRn), dl) is a proper complete separable metric

space; [24, Theorem 7.58] and [27, Corollary 3.6]. This example is a motivation for the development

due to applications in nonparametric statistics, curve fitting, and stochastic processes; see [26, 27, 30].

We use the following well-known fact repeatedly.

2.4 Lemma If (Y, dY ) is a proper metric space, then argmin{dY (y, y′) : y′ ∈ C} ̸= ∅ for every y ∈ Y

and nonempty closed set C ⊂ Y .

Since the aw-distance quantifies epi-convergence, it is clear that its value for two lsc functions, or that

of its estimates, leads to bounds on the distance between optimal solutions and optimal values of the

two functions. Estimates of the aw-distance is the subject of the next section, with solutions being

dealt with in Section 4.
1The outer limit of a sequence of sets {Aν}ν∈IN , denoted by limsupAν , is the collection of points x to which a

subsequence of {xν}ν∈IN , with xν ∈ Aν , converges. The inner limit, denote by liminf Aν , is the points to which a sequence
of {xν}ν∈IN , with xν ∈ Aν , converges. If both limits exist and are identical to A, we say that Aν set-converges to A; see
[10, 24].
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3 Distance Estimates

This section gives practically important estimates of the aw-distance between two lsc functions. We

begin with defining an auxiliary quantity that estimates dlρ. For ρ ≥ 0 and f, g ∈ lsc-fcns(X), let

d̂lρ(f, g) := max
{
e
(
epi f ∩ Sρ, epi g

)
, e

(
epi g ∩ Sρ, epi f

)}
,

where the excess of a set C over a set D is given by

e(C,D) := sup{dist(z,D) : z ∈ C} if C,D are nonempty,

e(C,D) = ∞ if C nonempty and D empty, and e(C,D) = 0 otherwise. Roughly speaking, d̂lρ(f, g) is

the “padding” of epi g needed for it to contain epi f ∩ Sρ and vice versa. The relations among dl, dlρ,

and d̂lρ given next extend [24, Exercise 7.60] from X = IRn to metric spaces.

3.1 Proposition (estimates of aw-distance) For f, g ∈ lsc-fcns(X), the following holds, where we use

the notation δf = dist((x̃, 0), epi f) and similarly for g.

(i) dlρ(f, g) and d̂lρ(f, g) are nondecreasing functions of ρ;

(ii) dlρ′(f, g)− dlρ(f, g) ≤ 2e(Sρ′ ,Sρ) for ρ′ ≥ ρ ≥ 0;

(iii) d̂lρ(f, g) ≤ dlρ(f, g) ≤ d̂lρ′(f, g) for ρ
′ > 2ρ+max{δf , δg} for ρ ≥ 0;

(iv) dlρ(f, g) ≤ max{δf , δg}+ ρ for ρ ≥ 0;

(v) dl(f, g) ≥ (1− e−ρ)|δf − δg|+ e−ρdlρ(f, g) for ρ ≥ 0;

(vi) dl(f, g) ≤ (1− e−ρ)dlρ(f, g) + e−ρ[max{δf , δg}+ ρ+ 1] for ρ ≥ 0;

(vii) |δf − δg| ≤ dl(f, g) ≤ max{δf , δg}+ 1.

If (X, d) is proper, then > can be replaced by ≥ in (iii).

Proof. See appendix.

A nearly precise estimate of d̂lρ is provided by the following convenient quantity, which is closely

related to the Kenmochi condition of [5]. For f, g ∈ lsc-fcns(X), ρ ≥ 0, and δ ≥ 0, let

d̂lδρ(f, g) := inf
{
η ≥ 0 : infIB(x,η+δ) g ≤ max{f(x),−ρ}+ η, ∀x ∈ levρ f ∩ IBρ

infIB(x,η+δ) f ≤ max{g(x),−ρ}+ η, ∀x ∈ levρ g ∩ IBρ

}
,

where levα f := {x ∈ X : f(x) ≤ α}. Below, we also let dom f := {x ∈ X : f(x) < ∞}. The next

proposition extends a result in [29] from X = IRn to general metric spaces.
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3.2 Proposition (estimates for auxiliary quantity) For f, g ∈ lsc-fcns(X), ρ ∈ [0,∞), and δ > 0,

d̂lδρ(f, g) ≤ d̂lρ(f, g) ≤ d̂l0ρ(f, g) <∞.

If (X, d) is proper, then d̂l0ρ(f, g) = d̂lρ(f, g).

Proof. See appendix.

We state next an upper bound on d̂l0ρ in the case of Lipschitz continuous functions. We say that a

function f : X → IR is Lipschitz continuous with modulus κ : [0,∞) → [0,∞) (relative to x̃) if

|f(x)− f(y)| ≤ κ(ρ)d(x, y) for all x, y ∈ IBρ and ρ ≥ 0.

Parallel to d̂lρ(f, g), we also define with a slight abuse of notation

d̂lρ(C,D) := max
{
e
(
C ∩ IBρ, D

)
, e

(
D ∩ IBρ, C

)}
, ρ ≥ 0, C,D ⊂ X nonempty closed.

The next result generalizes a statement in [29] to metric spaces and also tightens it slightly. We define

for any C ⊂ X the function ιC : X → IR that has ιC(x) = 0 if x ∈ C and ιC(x) = ∞ otherwise. We

also adopt the usual convention that −∞+∞ = ∞.

3.3 Proposition (distance estimate for Lipschitz functions) Suppose that C,D ⊂ X are nonempty

closed sets and f, g : X → IR are Lipschitz continuous with common modulus κ. Then, for ρ ∈ [0,∞)

and ρ′ ∈ (ρ+ d̂lρ(C,D),∞),

d̂l0ρ(f + ιC , g + ιD) ≤ supAρ
|f − g|+max{1, κ(ρ′)}d̂lρ(C,D)

where Aρ = (levρ{f + ιC} ∪ levρ{g + ιD}) ∩ IBρ.

If (X, d) is proper, then the result also holds for ρ′ = ρ+ d̂lρ(C,D).

Proof. See appendix.

Sometimes the following asymmetric quantity is useful. For f, g ∈ lsc-fcns(X) and ρ ≥ 0, let

η+ρ (f ; g) := inf
{
η ≥ 0 : infIB(x,η) f ≤ max{g(x),−ρ}+ η ∀x ∈ levρ g ∩ IBρ

}
.

Obviously, d̂l0ρ(f, g) = max{η+ρ (f ; g), η+ρ (g; f)} and η+ρ (f ; g) ≤ max{0, suplevρ g∩IBρ
f − g}. Proposition

3.2 implies that for any f, g ∈ lsc-fcns(X), η+ρ (f ; g) <∞.

4 Solution Estimates

Since f, g ∈ lsc-fcns(X) completely define the problems minx∈X f(x) and minx∈X g(x), and dl quantifies

epi-convergence, it is clear that dl(f, g) leads to estimates of | inf f − inf g| as well as some notion

of distance between argmin f and argmin g. In this section, we provide such estimates as well as

estimates between near-optimal solutions and near-optimal near-feasible solutions. Instead of dl, we

6



work directly with the auxiliary quantity d̂l0ρ, which is simpler to estimate in most practical situations;

see for example Proposition 3.3. In view of Propositions 3.1 and 3.2, the difference between the two

quantities are anyhow small for large ρ. We note that the results of this section are practically more

useful when function values are scaled to be of the same order of magnitude as the parameter ρ.

We start by developing a result for optimal values that generalizes a statement in [6] by considering

general metric spaces, permitting empty sets of optimal solutions, and dealing with the asymmetric

quantity η+ρ .

4.1 Theorem (approximation of optimal value) Suppose that f, g ∈ lsc-fcns(X), ρ ∈ (0,∞), ρ >

inf f ≥ −ρ, and ε- argmin f ∩ IBρ ̸= ∅ for all ε > 0. Then,

inf g − inf f ≤ η+ρ (g; f) ≤ d̂l0ρ(f, g).

If the assumption about f also holds for g, then

| inf g − inf f | ≤ d̂l0ρ(f, g).

Proof. We note that η+ρ (g; f) <∞. Let η ∈ (η+ρ (g; f),∞) be arbitrary. Then, for all x ∈ levρ f ∩ IBρ,

inf g ≤ infIB(x,η) g ≤ max{f(x),−ρ}+ η. (1)

Set ε0 = ρ− inf f > 0. Let ε ∈ (0, ε0] be arbitrary and xε ∈ ε- argmin f ∩IBρ. Then, f(xε) ≤ inf f +ε ≤
inf f + ε0 = ρ and thus xε ∈ levρ f . Applying (1) with x = xε results in

inf g ≤ max{f(xε),−ρ}+ η ≤ max{inf f + ε,−ρ}+ η ≤ inf f + ε+ η.

After letting ε and η tend to their lower limits, we obtain that inf g ≤ inf f+η+ρ (g; f) ≤ inf f+ d̂l0ρ(f, g).

The final result follows after a replication of these arguments with the roles of f and g reversed.

We observe that if argmin f ∩ IBρ ̸= ∅, then it suffices to have ρ ≥ inf f ≥ −ρ in Theorem 4.1.

To enable a statement about optimal solutions, we need to bring in conditioning. The next result,

which generalizes a similar statement in [6] to metric spaces, carries this out.

4.2 Theorem (approximation of optimal solutions) Suppose that f, g ∈ lsc-fcns(X) are such that

inf f, inf g ∈ [−ρ, ρ], argmin f ∩ IBρ ̸= ∅, and argmin g ∩ IBρ ̸= ∅

for some ρ ∈ [0,∞) and that there exists an increasing and continuous function ψf : [0,∞) → [0,∞),

with ψf (0) = 0 such that

f(x)− inf f ≥ ψf

(
dist(x, argmin f)

)
for all x ∈ X.

Then,

e (argmin g ∩ IBρ, argmin f) ≤ d̂l0ρ(f, g) + ψ−1
f

(
2d̂l0ρ(f, g)

)
.
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Proof. From Proposition 3.2, d̂l0ρ(f, g) <∞. Let η ∈ (d̂l0ρ(f, g),∞) be arbitrary. For all x ∈ levρ g∩IBρ,

infIB(x,η) f ≤ max{g(x),−ρ} + η. In view of the property of ψf and the fact that inf g ≥ −ρ, we find

that for x ∈ levρ g ∩ IBρ,

g(x)− inf f + η = max{g(x),−ρ}+ η − inf f ≥ infy∈IB(x,η) f(y)− inf f

≥ infy∈IB(x,η) ψf

(
dist(y, argmin f)

)
.

By Theorem 4.1, inf g− inf f ≤ η; see the comment after that theorem to establish that ρ is sufficently

large despite the fact that it might coincide with inf f and inf g. Thus, for x ∈ argmin g ∩ IBρ, which of

course implies that x ∈ levρ g, we have that

2η ≥ inf g − inf f + η = g(x)− inf f + η

≥ infy∈IB(x,η) ψf

(
dist(y, argmin f)

)
≥ ψf

(
infy∈IB(x,η) dist(y, argmin f)

)
,

where the last inequality follows from the increasing property of ψf . Therefore, we have that

infy∈IB(x,η) dist
(
y, argmin f

)
≤ ψ−1

f (2η).

Let ε > 0 be arbitrary. There exists an xε ∈ IB(x, η) such that

dist
(
xε, argmin f

)
≤ infy∈IB(x,η) dist

(
y, argmin f

)
+ ε.

These facts then imply that for x ∈ argmin g ∩ IBρ,

dist(x, argmin f) ≤ dist(xε, argmin f) + d(xε, x) ≤ infy∈IB(x,η) dist
(
y, argmin f

)
+ ε+ η

≤ ψ−1
f (2η) + ε+ η.

Since ε > 0 is arbitrary, we have that dist(x, argmin f) ≤ η+ψ−1
f (2η). This holds for all x ∈ argmin g∩

IBρ and consequently

e
(
argmin g ∩ IBρ, argmin f

)
≤ η + ψ−1

f (2η).

Since ψ−1
f is continuous, the conclusion follows by letting η tend to d̂l0ρ(f, g).

The bound is sharpe even for X = IR as demonstrated by the following example. Let f(x) = x2

and for η ≥ 0 let gη(x) = (x− η)2 if x ∈ IR \ ([0, 2η] ∪ {η +
√
2η}), gη(x) = η if x ∈ [0, 2η] ∪ {η +

√
2η}.

One can show that for x̃ = 0 and sufficiently large ρ, d̂l0ρ(f, g) = η. Then, argmin f = {0} and

argmin gη = [0, 2η]∪{η+
√
2η}. Since the conditioning function ψf (t) = t2 in this case, we see that the

conclusion of the theorem holds with equality when η ≤ 2.

In practice, it is difficult to develop a conditioning function ψf as required by Theorem 4.2; see

[6] for a thorough discussion. Fortunately, a strong Lipschitz-type statement can be made about near-

optimal solutions without the knowledge about such conditioning. Even for X = IRn, the next result is

novel by considering different levels of near optimality for the two problems and avoiding the convexity

assumption of [7] and [24, Theorem 7.69].
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4.3 Theorem (approximation of near-optimal solutions) Suppose that f, g ∈ lsc-fcns(X), ρ ∈ (0,∞),

inf f ∈ [−ρ, ρ), and γ- argmin f ∩ IBρ ̸= ∅ for all γ > 0. If ε ≥ 0, δ > 0, and inf g ∈ [−ρ, ρ− ε], then

e
(
ε- argmin g ∩ IBρ, (ε+ 2η̄ + δ)- argmin f

)
≤ η̄, where η̄ = d̂l0ρ(f, g).

If in addition (X, d) is proper, then δ can be set to zero.

Proof. From Proposition 3.2, d̂l0ρ(f, g) <∞. Let η ∈ (d̂l0ρ(f, g),∞) be arbitrary. For all x ∈ levρ g∩IBρ,

infIB(x,η) f ≤ max{g(x),−ρ} + η. Let x ∈ ε- argmin g ∩ IBρ, which implies that x ∈ levρ g. Since

inf g ≥ −ρ, we therefore have that

infIB(x,η) f ≤ max{g(x),−ρ}+ η ≤ max{inf g + ε,−ρ}+ η = inf g + ε+ η. (2)

There exists xδ ∈ IB(x, η) such that f(xδ) ≤ infIB(x,η) f + δ/2. From above we then have that f(xδ) ≤
inf g + ε + η + δ/2 ≤ inf f + ε + 2η + δ/2, where the last inequality follows from Theorem 4.1. Thus,

xδ ∈ (ε + 2η + δ/2)- argmin f and dist(x, (ε + 2η + δ/2)- argmin f) ≤ η. Since this holds for all

x ∈ ε- argmin g ∩ IBρ,

e
(
ε- argmin g ∩ IBρ, (ε+ 2η + δ/2)- argmin f

)
≤ η.

The first conclusion then follows after letting η tend to η̄.

If (X, d) is proper, then we continue from (2) as follows. Since lsc functions attains their minimum

over compact sets, there exists x̂ ∈ argminIB(x,η) f and thus f(x̂) ≤ inf g + ε + η ≤ inf f + ε + 2η,

where again the last inequality follows from Theorem 4.1. Consequently, x̂ ∈ (ε + 2η)- argmin f and

dist(x, (ε+2η)- argmin f) ≤ η. Let {ην}ν∈IN be such that ην ↘ η̄ and dist(x, (ε+2ην)- argmin f) ≤ ην . In

view of Lemma 2.4, there exists yν ∈ (ε+2ην)- argmin f such that d(x, yν) = dist(x, (ε+2ην)- argmin f).

Since {yν}ν∈IN is contained in a ball, which under the additional assumption is compact, we have that

there exists an N ⊂ IN and ȳ such that yν →N ȳ. Since d(x, yν) ≤ ην for all ν, d(x, ȳ) ≤ η̄. Moreover,

f(yν) ≤ ε+2ην for all ν implies that f(ȳ) ≤ ε+2η̄ because f is lsc. Thus, dist(x, (ε+2η̄)- argmin f) ≤ η̄.

Since this holds for all x ∈ ε- argmin g ∩ IBρ, the second conclusion follows.

The above bound is sharp even for X = IR. Suppose that f, g : IR → IR are given by f(x) = 1 for

x ∈ [1, 2), f(2) = −1, and f(x) = ∞ otherwise, and g(x) = 0 for x ∈ [0, 2] and g(x) = ∞ otherwise.

Obviously, f, g are lsc. Let d̂l0ρ be defined with x̃ = 0 and ρ > 2. Then, d̂l0ρ(f, g) = 1. Clearly, x = 0

is in argmin g ∩ IBρ and dist(x, 2- argmin f) = 1. In fact, e(argmin g ∩ IBρ, 2- argmin f) = 1. Moreover,

dist(x, γ- argmin f) = 2 for γ ∈ [0, 2).

Theorem 4.3 leads to the following corollary about rate of convergence.

4.4 Corollary (rate of convergence to near-optimal solutions) Suppose that ρ ∈ (0,∞), δ > ε ≥ 0,

f ∈ lsc-fcns(X), inf f ∈ [−ρ, ρ), and γ- argmin f ∩ IBρ ̸= ∅ for all γ > 0. If fν ∈ lsc-fcns(X) has

inf fν ∈ [−ρ, ρ− ε] for all ν and d̂l0ρ(f
ν , f) → 0, then there exists an ν̄ such that

e
(
ε- argmin fν ∩ IBρ, δ- argmin f

)
≤ d̂l0ρ(f

ν , f) for all ν ≥ ν̄.

9



Proof. By Theorem 4.3 we have that for any δ0 > 0 and ν,

e
(
ε- argmin fν ∩ IBρ, (ε+ 2ην + δ0)- argmin f

)
≤ ην , where ην = d̂l0ρ(f

ν , f).

Set δ0 = (δ − ε)/2 > 0. Since ην → 0, there exists an ν̄ such that ην ≤ (δ − ε)/4 for all ν ≥ ν̄. Since

ε+2ην +δ0 ≤ ε+2(δ−ε)/4+(δ−ε)/2 = δ for such ν, we have that e
(
ε- argmin fν ∩IBρ, δ- argmin f

)
≤

ην for ν ≥ ν̄, which establishes the conclusion.

Near-optimal solutions are feasible in the sense that x ∈ ε- argmin f and inf f < ∞ implies that

x ∈ dom f . We also consider near-feasibility, which is often practically relevant, and reach the following

results about level sets; see [7] for results about convex functions on normed linear spaces.

4.5 Theorem (approximation of level sets) Suppose that f, g ∈ lsc-fcns(X), ρ ∈ [0,∞), and δ ∈ [−ρ, ρ].
Then, for any γ > 0,

e(levδ g ∩ IBρ, levδ+η̄+γ f) ≤ η̄ = η+ρ (f ; g)

If in addition (X, d) is proper, then γ can be set to zero.

Proof. We observe that η+ρ (f ; g) < ∞. Let η ∈ (η+ρ (f ; g),∞) be arbitrary. For all x ∈ levρ g ∩ IBρ,

infIB(x,η) f ≤ max{g(x),−ρ}+ η. Let x ∈ levδ g ∩ IBρ, which implies that x ∈ levρ g. Thus,

infIB(x,η) f ≤ max{g(x),−ρ}+ η ≤ max{δ,−ρ}+ η = δ + η. (3)

There exists xγ ∈ IB(x, η) such that f(xγ) ≤ infIB(x,η) f + γ/2. From above we then have that f(xγ) ≤
δ + η + γ/2. Consequently, xγ ∈ levδ+η+γ/2 f and dist(x, levδ+η+γ/2 f) ≤ η. Since this holds for any

x ∈ levδ g ∩ IBρ, e
(
levδ g ∩ IBρ, levδ+η+γ/2 f

)
≤ η. The first conclusion then follows after letting η tend

to η̄.

If (X, d) is proper, then we continue from (3) as follows. Since f attain its minimum over IB(x, η)

in this case, there exists x̂ ∈ argminIB(x,η) f and f(x̂) = infIB(x,η) f ≤ δ + η. Thus, x̂ ∈ levδ+η f and

dist(x, levδ+η f) ≤ η. Let {ην}ν∈IN be such that ην ↘ η̄ and dist(x, levδ+ην f) ≤ ην . In view of Lemma

2.4, there exists yν ∈ levδ+ην f such that d(x, yν) = dist(x, levδ+ην f). Since {yν}ν∈IN is contained in

a ball, which under the additional assumption is compact, we have that there exists an N ⊂ IN and ȳ

such that yν →N ȳ. Since d(x, yν) ≤ ην for all ν, d(x, ȳ) ≤ η̄. Moreover, f(yν) ≤ δ+ην for all ν implies

that f(ȳ) ≤ δ+ η̄ because f is lsc. Thus, dist(x, levδ+η̄ f) ≤ η̄. Since this holds for any x ∈ levδ g ∩ IBρ,

the second conclusion follows.

When considering both near-optimality and near-feasibility, we adopt the following definition. For

ε, δ ≥ 0, the set of near-optimal near-feasible solutions of the problem min{f0(x) : f(x) ≤ 0, x ∈ X},
which of course is equivalent to2 min{f0 + ιf≤0}, is given by

(ε, δ)- argmin{f0 + ιf≤0} := {x ∈ X : f0(x) ≤ inf{f0 + ιf≤0}+ ε, f(x) ≤ δ}.

The next results are the first ones dealing with near-optimality, near-feasibility, and the asymmetric

quantity η+ρ in a general setting.

2We use the slight abbreviation ιf≤0 for ι{x∈X:f(x)≤0}.

10



4.6 Theorem (approximation of near-optimal near-feasible solutions) For ε, ρ, η, η0 ∈ [0,∞), suppose

that the functions f0, g0, f, g ∈ lsc-fcns(X) satisfy

(i) supIBρ
{g0 − f0} ≤ η0 and supIBρ

{g − f} ≤ η

(ii) inf{f0 + ιf≤−η} finite and inf{g0 + ιg≤0} ∈ [−ρ, ρ− ε]

(iii) argmin{f0 + ιf≤−η} ∩ IBρ ̸= ∅ and argmin{g0 + ιg≤0} ∩ IBρ ̸= ∅.

Then, for α, δ,≥ 0 and γ > 0,

e
(
(ε, δ)- argmin{g0 + ιg≤0} ∩ IBρ, (ε+ η+ + η0 + γ, α)- argmin{f0 + ιf≤−η}

)
≤ η+,

where η+ = η+ρ (f0 + ιf≤α−η; g0 + ιg≤δ) <∞.

If in addition (X, d) is proper, then γ can be set to zero.

Proof. First we note that η+ρ (f0 + ιf≤α−η; g0 + ιg≤δ) is finite because f0 + ιf≤α−η and g0 + ιg≤δ are in

lsc-fcns(X). Second, let η̄ ∈ (η+,∞). Then,

infIB(x,η̄){f0 + ιf≤α−η} ≤ max{g0(x) + ιg≤δ(x),−ρ}+ η̄ for all x ∈ levρ{g0 + ιg≤δ} ∩ IBρ.

For x ∈ IBρ satisfying g0(x) ≤ inf{g0 + ιg≤0} + ε and g(x) ≤ δ, we have x ∈ levρ{g0 + ιg≤δ}. Since

inf{g0 + ιg≤0} ≥ −ρ,

infIB(x,η̄){f0 + ιf≤α−η} ≤ max{g0(x) + ιg≤δ(x),−ρ}+ η̄ ≤ max{g0(x),−ρ}+ η̄

≤ inf{g0 + ιg≤0}+ ε+ η̄ = infIBρ{g0 + ιg≤0}+ ε+ η̄ <∞, (4)

where the equality follows from the fact that argmin{g0 + ιg≤0} ∩ IBρ ̸= ∅. We next consider two cases.

First, if infIB(x,η̄){f0 + ιf≤α−η} is finite, then there exists y ∈ IB(x, η̄) such that

f0(y) + ιf≤α−η(y) ≤ infIB(x,η̄){f0 + ιf≤α−η}+ γ/2.

Consequently,

f0(y) + ιf≤α−η(y) ≤ infIBρ{g0 + ιg≤0}+ ε+ η̄ + γ/2

≤ infIBρ{f0 + ιg≤0}+ ε+ η̄ + η0 + γ/2

≤ infIBρ{f0 + ιf≤−η}+ ε+ η̄ + η0 + γ/2,

where the last inequality follows from the fact that f(z) ≤ −η implies that g(z) ≤ 0 for z ∈ IBρ. Since

the right-hand side above is finite, f(y) ≤ α − η and f0(y) ≤ infIBρ{f0 + ιf≤−η} + ε + η̄ + η0 + γ/2.

Since infIBρ{f0 + ιf≤−η} = inf{f0 + ιf≤−η}, we then have that

y ∈ (ε+ η̄ + η0 + γ/2, α)- argmin{f0 + ιf≤−η}.

Hence,

dist
(
x, (ε+ η̄ + η0 + γ/2, α)- argmin{f0 + ιf≤−η}

)
≤ η̄. (5)
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Second, we consider the other case when infIB(x,η̄){f0 + ιf≤α−η} = −∞. Then, there exists y ∈ IB(x, η̄)

such that again f(y) ≤ α− η and f0(y) ≤ infIBρ{f0+ ιf≤−η}+ ε+ η̄+ η0+ γ/2. Thus, also in this case,

(5) holds. Since this argument is valid for all x ∈ IBρ satisfying g0(x) ≤ inf{g0+ ιg≤0}+ε and g(x) ≤ δ,

e
(
(ε, δ)- argmin{g0 + ιg≤0} ∩ IBρ, (ε+ η̄ + η0 + γ/2, α)- argmin{f0 + ιf≤−η}

)
≤ η̄.

The main conclusion then follows after letting η̄ tend to its lower limit of η+.

If (X, d) is proper, then we continue from (4) by recognizing that there exists y ∈ argminIB(x,η̄){f0+
ιf≤α−η} and thus

f0(y) + ιf≤α−η(y) ≤ infIBρ{g0 + ιg≤0}+ ε+ η̄ ≤ infIBρ{f0 + ιf≤−η}+ η̄ + η0 + ε <∞.

Consequently, f(y) ≤ α − η and f0(y) ≤ infIBρ{f0 + ιf≤−η} + η̄ + η0 + ε, or equivalently, y ∈ (ε +

η̄ + η0, α)- argmin{f0 + ιf≤−η}. Following the same argument as used towards the end of the proof of

Theorem 4.3, we find that the relation also holds as η̄ reaches its lower limit of η+ and

dist
(
x, (ε+ η+ + η0, α)- argmin{f0 + ιf≤−η}

)
≤ η+.

Since this holds for all x ∈ IBρ with g0(x) ≤ inf{g0 + ιg≤0}+ ε and g(x) ≤ δ, the conclusion follows.

We next give an estimate of η+ρ analogous to Proposition 3.3.

4.7 Proposition (bounds for Lipschitz continuous objective) Suppose that f, f0, g, g0 ∈ lsc-fcns(X),

with f0 being Lipschitz continuous functions with modulus κ, and inf{f0 + ιf≤0} is finite. Then, for

α, δ, ρ ∈ [0,∞) and ρ′ ∈ (ρ+ e(levδ g ∩ IBρ, levα f),∞).

η+ρ (f0 + ιf≤α; g0 + ιg≤δ) ≤ max{0, supA0
ρ
f0 − g0}+max{1, κ(ρ′)}e(levδ g ∩ IBρ, levα f),

where A0
ρ = levρ{g0 + ιg≤δ} ∩ IBρ.

Moreover, if in addition δ ≤ ρ, and α > η+ρ (f ; g) + δ, then

e(levδ g ∩ IBρ, levα f) ≤ η+ρ (f ; g).

If (X, d) is proper, α = η+ρ (f ; g) + δ is permitted.

Proof. We observe that η+ρ (f0 + ιf≤α; g0 + ιg≤δ) is finite even if g0 + ιg≤δ is identical to ∞ and

that levα f ̸= ∅. Thus, e(levδ f ∩ IBρ, levα f) < ∞. Let ρ′ ∈ (ρ + e(levδ g ∩ IBρ, levα f),∞), and

ε ∈ (0, ρ′ − ρ− e(levδ g ∩ IBρ, levα f)]. Set

ηε = max{0, supA0
ρ
f0 − g0}+max{1, κ(ρ′)}

[
e(levδ g ∩ IBρ, levα f) + ε

]
.

Suppose that x ∈ levρ{g0 + ιg≤δ} ∩ IBρ, which implies that g(x) ≤ δ. Since levα f ̸= ∅, there exists

y ∈ X such that f(y) ≤ α and d(x, y) ≤ inf{d(x, y′) : f(y′) ≤ α, y′ ∈ X}+ ε. Thus,

e(levδ g ∩ IBρ, levα f) ≥ dist(x, levα f) ≥ d(x, y)− ε.
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Consequently, d(x, y) ≤ ηε and d(x̃, y) ≤ d(x̃, x)+d(x, y) ≤ ρ+e(levδ g∩IBρ, levα f)+ε ≤ ρ′. Combining

these facts, we find that

infIB(x,ηε){f0 + ιf≤α} ≤ f0(y) = f0(y)− f0(x) + f0(x)− g0(x) + g0(x)

≤ κ(ρ′)d(x, y) + max{0, supA0
ρ
f0 − g0}+max{g0(x) + ιg≤δ(x),−ρ}

≤ ηε +max{g0(x) + ιg≤δ(x),−ρ}.

Thus, η+ρ (f0 + ιf≤α; g0 + ιg≤δ) ≤ ηε. Since this fact holds for all ε > 0, the first conclusion follows.

An application of Theorem 4.5 results in the second part of the result.

We obtain a rate of convergence result by combining Theorems 4.5, 4.6, and Proposition 4.7.

4.8 Proposition (rate of convergence to near-optimal near-feasible solutions) For β > ε ≥ 0, α > δ ≥
0, ρ′ > ρ ≥ δ, and γ ∈ (0, α − δ), suppose that the functions f0, f

ν
0 , f, f

ν ∈ lsc-fcns(X), with f0 being

Lipschitz continuous with modulus κ, satisfy

(i) inf{f0 + ιf≤0}, inf{f0 + ιf≤−γ} are finite

(ii) argmin{f0 + ιf≤−γ} ∩ IBρ ̸= ∅

(iii) inf{fν0 + ιfν≤0} ∈ [−ρ, ρ− ε] for all ν

(iv) argmin{fν0 + ιfν≤0} ∩ IBρ ̸= ∅ for all ν.

If supIBρ
|fν0 −f0| → 0 and supIBρ

|fν −f | → 0, as ν → ∞, then there exists an ν̄ such that for all ν ≥ ν̄,

e
(
(ε, δ)- argmin{fν0 + ιfν≤0} ∩ IBρ, (β, α)- argmin{f0 + ιf≤−γ}

)
≤ supIBρ

|f0 − fν0 |+max{1, κ(ρ′)} supIBρ
|fν − f |.

Proof. There exists an ν̄ such that for all ν ≥ ν̄, supIBρ
|fν0 − f0| ≤ (β − ε)/4 and

supIBρ
|fν − f | ≤ min

{
γ,
ρ′ − ρ

2
,
α− δ − γ

2
,

β − ε

4max{1, κ(ρ′)}

}
.

Let ν ≥ ν̄. We start with an application of Theorem 4.6 with fν0 and fν in the role of g0 and g,

respectively, and η = γ and that theorem’s γ being set to (β − ε)/4. This results in

e
(
(ε, δ)- argmin{fν0 + ιfν≤0} ∩ IBρ, (ε+ η+ + (β − ε)/4+ (β − ε)/4, α)- argmin{f0 + ιf≤−γ}

)
≤ η+, (6)

where η+ = η+ρ (f0 + ιf≤α−γ ; f
ν
0 + ιfν≤δ). Next, we invoke Theorem 4.5 and conclude that

e(levδ f
ν ∩ IBρ, levα−γ f) ≤ η+ρ (f ; f

ν) ≤ supIBρ
|fν − f | ≤ ρ′ − ρ

2
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because α − γ > δ + (α − δ − γ)/2 ≥ δ + η+ρ (f ; f
ν). Finally, we bring in Proposition 4.7. Since

ρ+ e(levδ f
ν ∩ IBρ, levα−γ f) ≤ ρ+ (ρ′ − ρ)/2 < ρ′, we conclude that the present choice of ρ′ suffices in

that proposition and α there is set to α− γ > 0. Thus,

η+ ≤ supIBρ
|fν0 − f0|+max{1, κ(ρ′)}e(levδ fν ∩ IBρ, levα−γ f)

≤ supIBρ
|fν0 − f0|+max{1, κ(ρ′)} supIBρ

|fν − f | (7)

≤ β − ε

4
+ max{1, κ(ρ′)} β − ε

4max{1, κ(ρ′)}
≤ β − ε

2
.

Thus, ε+ η+ + (η − ε)/4 + (η − ε)/4 ≤ β and we see from (6) and (7) that the conclusion holds.

We note that the proposition makes a statement about rate of convergence of near-optimal near-

feasible solutions of the approximate problem min{fν0 + ιfν≤0} to solutions of a slightly restricted

“original” problem min{f0 + ιf≤−γ}, with γ > 0 arbitrarily small. The use of such a restriction allows

us to avoid possibly hard-to-verify conditions on the constraint function and its level sets.

5 Epi-Splines and Construction of Approximations

In the previous sections, we bounded the aw-distance between two given lsc functions and related such

bounds to solution estimates for the minimization problems defined by those functions. We now turn

to the construction of a function that approximates a given lsc function. In practice, approximations

of optimization problems depend on the nature of the application. We take an abstract perspective

and examine piecewise constant functions that resemble the simple functions of integration theory and

(zeroth-degree) polynomial splines from functional approximation theory. The approximating functions

are defined by a finite number of parameters. As we see below, they can be made to approximate to

an arbitrary level of accuracy any functions in lsc-fcns(X) under some assumptions on X, relying on

epi-convergence and the aw-distance to formalize the meaning of accuracy. The results in this section

certainly open up computational possibilities for solving difficulty optimization problems, but also

provide new means to establish theoretical results about lsc functions through their finite-dimensional

approximations.

We adopt the notation clA and intA for the closure and interior, respectively, of a subset A of a

topological space. The approximating functions are defined in terms a finite collection of subsets of X.

5.1 Definition (partition) A finite collection R1, R2, ..., RN of open subsets of X is a partition of a

closed set B ⊆ X if ∪N
k=1 clRk = B and Rk ∩Rl = ∅ for all k ̸= l.

For any f : X → IR and x ∈ X, let liminfx′→x f(x
′) := limδ↓0 infx′∈IB(x,δ) f(x

′). Clearly, f is lsc if

liminfx′→x f(x
′) ≥ f(x) for all x ∈ X (see for example [3, Section 2]). The approximating functions,

called epi-splines, are defined next.

5.2 Definition (epi-splines) An epi-spline s : X → IR, with partition R = {Rk}Nk=1 of a closed set
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B ⊆ X, is a function that

on each Rk, k = 1, ..., N , is constant,

has s(x) = ∞ for x ̸∈ B, and for every x ∈ X, has s(x) = liminfx′→x s(x
′).

The family of all such epi-splines is denoted by e-spl(R).

This definition straightforwardly extends from IRn to general metric spaces the one in [27]. There we

also deal with “higher-order” epi-splines involving polynomials of degrees greater than zero on each Rk,

which motivates the reference to “splines” in the name. The same possibility exists here, but we shy

away from that subject due to the complications related to extending polynomials to general metric

spaces. The reference to “epi” in the name is motivated by the choice of epi-convergence as the notion

of convergence as we see below.

Clearly, by definition, every epi-spline is lsc. The ability of epi-splines to approximate arbitrary lsc

functions relies on a refinement of the partition.

5.3 Definition (infinite refinement) A sequence {Rν}∞ν=1 of partitions of a closed set B ⊆ X, with

Rν = {Rν
k}N

ν

k=1, is an infinite refinement of B if

for every x ∈ B and ε > 0, there exist ν̄ ∈ IN and δ ∈ (0, ε) such that

Rν
k ⊂ IB(x, ε) for every ν ≥ ν̄ and k satisfying Rν

k ∩ IB(x, δ) ̸= ∅.

We note that this notion of refinement is local in nature, which is essential as we aim to address partitions

of unbounded sets. A sufficient condition for the existence of an infinite refinement is separability.

5.4 Proposition (existence of infinite refinement) If B ⊆ X is nonempty, separable, and solid3, then

there exists an infinite refinement of B.

Proof. Let x0 ∈ B and Bν = IB(x0, ν) ∩ B, ν ∈ IN . The separability of B implies that there exists a

sequence {IB(xj , εj)}j∈IN , with {xj}j∈IN a dense subset of B and {εj}j∈IN a dense subset of (0,∞) such

that {(xj , εj)}j∈IN is dense in B × (0,∞) under the product topology. For every ν, the boundedness of

Bν implies that there exists a Jν <∞ such that Bν ⊂ {IB(xj , εj)}Jν

j=1. Let {Mν}ν∈IN be a sequence of

scalars that tend to infinity and Mν ≥ Jν .

We are then ready to construct the open sets that form the partitions, which subsequently will

be shown to be an infinite refinement. For every ν the process is identical. First, sort the balls

{IB(xj , εj)}Mν

j=1 in the order of nondecreasing radii and let this ordered set be {IB(xj
ν
k , εj

ν
k )}Mν

k=1, i.e.,

εj
ν
k ≤ εj

ν
k+1 for all k = 1, ...,Mν − 1. Second, set Rν

1 = int(Bν ∩ IB(xj
ν
1 , εj

ν
1 )) and recursively

Rν
k = int

((
Bν ∩ IB(xj

ν
k , εj

ν
k )
)
\ ∪k−1

l=1 R
ν
l

)
for k = 2, 3, ...,Mν .

Set Nν = Mν + 1 and let Rν
Nν = int(B \ IB(x0, ν)). We observe that some Rν

k maybe empty, but that

is immaterial. Obviously, Rν
k, k = 1, ..., Nν , are open and nonoverlapping, and ∪Nν

k=1R
ν
k ⊂ B. Since B

3B is solid if B = cl(intB)
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is closed, we also have that ∪Nν

k=1 clR
ν
k ⊂ B. We can conclude that Rν

k, k = 1, ..., Nν , is a partition of

B after establishing that ∪Nν

k=1 clR
ν
k ⊃ B. Suppose that x ∈ B. Since B = cl(intB) (i.e., is solid), there

exist {yµ}µ∈IN and positive numbers {δµ}µ∈IN such that yµ → x, δµ↘0, and IB(yµ, δµ) ⊂ intB. For

every µ, there is a kµ ∈ {1, ..., Nν} such that IB(yµ, δµ)∩Rν
kµ

̸= ∅ as we see from the construction. Hence,

there exists zµ ∈ IB(yµ, δµ)∩Rν
kµ
, which, due to δµ↘0, tend to x. This implies that x ∈ ∪Nν

k=1 clR
ν
k and

therefore {Rν
k}N

ν

k=1 is a partition of B. This holds for all ν.

We next show that Definition 5.3 holds. Let x ∈ B and ε > 0. There exists a ν̄ ≥ d(x0, x) + ε

such that the collection {IB(xj , εj)}M ν̄

j=1 contains a ball IB(xj∗ , εj∗) ⊃ IB(x, ε/4) and εj∗ ≤ ε/3. Suppose

that this ball is number kν∗ in the sorted collections {IB(xj
ν
k , εj

ν
k )}Mν

k=1, ν = ν̄, ν̄ + 1, .... Consequently,

∪kν∗
k=1 clR

ν
k ⊃ IB(x, ε/4) for all ν ≥ ν̄. By construction Rν

k ⊂ IB(xj
ν
k , εj

ν
k ) for all k and ν. Thus, for

every ν ≥ ν̄ and k = 1, ..., kν∗ , supy,y′∈Rν
k
d(y, y′) ≤ ε/3 due to the nondecreasing radii of the balls in

the sorted collections. We therefore have that Rν
k ⊂ IB(x, ε) for every k = 1, ..., kν∗ and ν ≥ ν̄ satisfying

Rν
k ∩ IB(x, ε/4) ̸= ∅. Since from above we know that ∪kν∗

k=1 clR
ν
k ⊃ IB(x, ε/4) for all ν ≥ ν̄, we conclude

that Rν
k ∩ IB(x, ε/4) = ∅ for all k = kν∗ +1, kν∗ +2, ..., Nν and ν ≥ ν̄. Consequently, Definition 5.3 holds

with δ = ε/4.

The above proof provides guidance towards the construction of infinite refinements, for which there

are, of course, many possibilities. A main approximation results for epi-splines is given next, where

the approximation is in the sense of epi-convergence and pointwise convergence. The result is an

improvement over one in [27] by allowing X to be a general metric space, not only IRn, and by also

establishing pointwise convergence as well as an upper bound. Later, we give a stronger conclusion of

convergence in the sense of the aw-distance under additional assumptions.

5.5 Theorem (approximation of lsc functions) If {Rν}∞ν=1 is an infinite refinement of a nonempty

closed set B ⊆ X, then for every f ∈ lsc-fcns(B) there exist epi-splines sν ∈ e-spl(Rν) satisfying the

following:

(i) sν epi-converges to f ,

(ii) sν converges pointwise to f on X, and

(iii) sν(x) ≤ max{−ν, f(x)} for all ν and x ∈ X.

Proof. Let f ∈ lsc-fcns(B) and Rν = {Rν
k}N

ν

k=1. For every ν ∈ IN and k ∈ {1, 2, ..., Nν}, we let

σνk = min
{
ν,max

{
−ν, infclRν

k
f
}}

and construct sν : X → IR as follows:

sν(x) = min
k=1,...,Nν

{
σνk : x ∈ clRν

k

}
for x ∈ B, and sν(x) = ∞ for x ̸∈ B.

For every ν ∈ IN , the open sets Rν
k, k = 1, ..., Nν , are disjoint. Thus, if x, x′ ∈ Rν

k, then sν(x) =

sν(x′) = σνk , and s
ν is constant on Rν

k. If x ∈ B, but not in Rν
k for any k = 1, ..., Nν , then for the set

16



Kν(x) = {k : x ∈ clRν
k} ⊂ {1, ..., Nν} we have that sν(x) = min{σνk : k ∈ Kν(x)}. Moreover, there

exists δν > 0 such that (∪k ̸∈Kν(x) clR
ν
k) ∩ IB(x, δν) = ∅. This implies that limδ↘ 0 infx′∈IB(x,δ) s

ν(x′) =

sν(x), which establishes that sν ∈ e-spl(Rν).

We next show epi-convergence of sν to f . Let x ∈ B be arbitrary. By the lsc of f , for every ε > 0

there exists δ > 0 such that f(x′) ≥ f(x)− ε whenever x′ ∈ IB(x, δ). Consequently,

σνk ≥ min
{
ν, infclRν

k
f
}
≥ min{ν, f(x)− ε} when Rν

k ⊂ IB(x, δ).

Since {Rν}∞ν=1 is an infinite refinement, there exists a ν̄ and δ0 ∈ (0, δ) such that Rν
k ⊂ IB(x, δ) for

every ν ≥ ν̄ and k satisfying Rν
k ∩ IB(x, δ0) ̸= ∅. Consequently, for x′ ∈ B ∩ IB(x, δ0/2) and ν ≥ ν̄,

sν(x′) = min
k=1,...,Nν

{
σνk : x′ ∈ clRν

k

}
≥ min{ν, f(x)− ε}

because every k and ν ≥ ν̄ with x′ ∈ clRν
k must also have Rν

k ⊂ IB(x, δ). For x′ ∈ IB(x, δ0/2) \
B, sν(x′) = ∞. These fact establishes that, for every sequence xν → x ∈ B, liminf sν(xν) ≥
liminf min{ν, f(x) − ε} = f(x) − ε, where the possibility that f(x) = ∞ is included. Since ε is ar-

bitrary, liminf sν(xν) ≥ f(x). This inequality also holds for x ̸∈ B also because B is closed and

sν = f = ∞ on X \B. Next, again let x ∈ B be arbitrary. By construction,

sν(x) ≤ σνk ≤ max
{
− ν, infclRν

k
f
}
for every k satisfying x ∈ clRν

k.

Hence, sν(x) ≤ max{−ν, f(x)}. Set xν = x for all ν and we obtain that limsup sν(xν) = limsup sν(x) ≤
f(x). If x ̸∈ B, then f(x) = ∞ and the previous inequality holds trivially for any xν . Thus, we have

established epi-convergence of sν to f .

Since liminf sν(x) ≥ f(x) holds by virtue of the established epi-convergence, we also have that

sν(x) → f(x) for all x ∈ X, which establishes the pointwise convergence. The fact that sν(x) ≤
max{−ν, f(x)} for all x ∈ X is settled already.

The proof of Theorem 5.5 is constructive. Given a partition {Rk}Nk=1, an approximating epi-spline

to a lsc function f is essentially the piecewise constant function given at x ∈ Rk by infRk
f .

We next examine approximation of functions in lsc-fcns(X) by epi-splines in the sense of the aw-

distance, which requires us to adopt a “uniformity” requirement on infinite refinements. As we see

below, this imposes further restrictions on the underlying space (X, d).

5.6 Definition (locally uniform infinite refinement) A sequence {Rν}∞ν=1 of partitions of a closed set

B ⊆ X, with Rν = {Rν
k}N

ν

k=1, is a locally uniform infinite refinement of B if

for every x ∈ B, ρ ≥ 0, and ε > 0, there exists a ν̄ ∈ IN such that

Rν
k ⊂ IB(y, ε) for every y ∈ IB(x, ρ) ∩B, ν ≥ ν̄, and k satisfying y ∈ clRν

k.

It should be apparent that a locally uniform infinite refinement is also an infinite refinement. A locally

uniform infinite refinement needs to have ν̄ that applies not only at a single point x, as in the case of

an infinite refinement, but for all points in arbitrarily large balls. Naturally, compactness ensures such

a property as established next.
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5.7 Proposition (sufficient condition for locally uniform infinite refinement) There exists a locally

uniform infinite refinement of every nonempty solid set B ⊆ X for which B ∩ IB(x, r) is compact for all

x ∈ B and r > 0.

Proof. Let x0 ∈ B, ν ∈ IN , and Bν = IB(x0, ν) ∩ B. Since Bν is compact, there exists Mν < ∞ and

{xν,k}Mν

k=1 ⊂ Bν such that ∪Mν

k=1IB(xν,k, 1/ν) ⊃ Bν . Set Rν
1 = int(Bν ∩ IB(xν,1, 1/ν)) and recursively

Rν
k = int

((
Bν ∩ IB(xν,k, 1/ν)

)
\ ∪k−1

l=1 R
ν
l

)
for k = 2, 3, ...,Mν .

Set Nν = Mν + 1 and let Rν
Nν = int(B \ IB(x0, ν)). We observe that some Rν

k maybe empty, but that

is immaterial. Obviously, Rν
k, k = 1, ..., Nν , are open and nonoverlapping, and ∪Nν

k=1R
ν
k ⊂ B. Since B

is closed, we also have that ∪Nν

k=1 clR
ν
k ⊂ B. We conclude that ∪Nν

k=1 clR
ν
k ⊃ B after following the same

argument as in the proof of Proposition 5.4. Therefore, {Rν
k}N

ν

k=1 is a partition of B.

We next show that Definition 5.6 holds. Let x ∈ B, ρ ≥ 0, and ε > 0. Set ν̄ equal to the smallest

integer no smaller than max{2/ε, d(x, x0)+ε+ρ}. By construction, for every ν ≥ ν̄ and k = 1, ..., Nν−1,

sup{d(y, y′) : y, y′ ∈ Rν
k} ≤ ε. Moreover, for such ν, IB(y, ε) ∩ B ⊂ Bν for all y ∈ IB(x, ρ) ∩ B and

therefore Rν
k ⊂ IB(y, ε) whenever y ∈ clRν

k and y ∈ IB(x, ρ) ∩B. This establishes the result.

Next we strengthen Theorem 5.5 by considering the aw-distance. We say that an epi-spline s on

X is rational if s(x) is a rational number for every x ∈ dom s. The subset of rational epi-splines in

e-spl(R) is denoted by r-spl(R).

5.8 Theorem (rational epi-splines dense in lsc functions) If {Rν}∞ν=1 is a locally uniform infinite

refinement of a nonempty closed set B ⊆ X, then

∞∪
ν=1

r-spl(Rν) is dense in (lsc-fcns(B), dl).

Proof. Let f ∈ lsc-fcns(B) and Rν = {Rν
k}N

ν

k=1. For every ν ∈ IN and Rν
k, k = 1, 2, ..., Nν , with

infclRν
k
f finite, let qνk be a rational number in [infclRν

k
f−1/ν, infclRν

k
f ]. Let σνk = min {ν,max {−ν, qνk}}.

For ν ∈ IN and Rν
k, k = 1, 2, ..., Nν , with infclRν

k
f = ∞, set σνk = ν and for infclRν

k
f = −∞ set σνk = −ν.

We proceed by constructing sν : X → IR as follows:

sν(x) = min
k=1,...,Nν

{
σνk : x ∈ clRν

k

}
for x ∈ B, and sν(x) = ∞ for x ̸∈ B.

A replication of the arguments in the proof of Theorem 5.5 establishes that sν ∈ r-spl(Rν).

We next show that for any ρ ≥ 0, d̂l0ρ(s
ν , f) → 0 as ν → ∞. By construction, if infclRν

k
f is finite,

then

sν(x) ≤ σνk ≤ max
{
− ν, qνk

}
≤ max

{
− ν, infclRν

k
f
}
≤ max{−ν, f(x)} when x ∈ clRν

k.

If infclRν
k
f = ±∞, then sν(x) ≤ ν for x ∈ clRν

k. Since this holds for all k = 1, ..., Nν , sν(x) ≤
max{−ν, f(x)} for x ∈ X. For ν ≥ ρ, x ∈ X, and η = 0,

infIB(x,η) s
ν = sν(x) ≤ max{f(x),−ν}+ η ≤ max{f(x),−ρ}+ η.
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Therefore even η = 0 satisfies the second collection of constraints in the definition of d̂l0ρ(s
ν , f). We now

turn to the other constraints in the definition with the roles of sν and f reversed. Let ε > 0 and z ∈ B.

Since {Rν}∞ν=1 is a locally uniform infinite refinement, there exists a ν̄ ∈ IN such that Rν
k ⊂ IB(x, ε)

for every x ∈ B ∩ IB(z, d(x̃, z) + ρ), ν ≥ ν̄, and k satisfying x ∈ clRν
k. Let x ∈ levρ s

ν ∩ IBρ and

ν > max{ρ, ν̄}. Since d(x, z) ≤ d(x, x̃) + d(x̃, z) ≤ ρ+ d(x̃, z), x ∈ B ∩ IB(z, d(x̃, z) + ρ). There exists a

kνx ∈ {1, ..., Nν} such that x ∈ clRν
kνx

and infclRν
kνx
f ≤ sν(x) + 1/ν due to the fact that sν(x) ≤ ρ < ν.

Since kνx is one of possibly several k for which Rν
k ⊂ IB(x, ε) holds, we obtain that for ν > max{ρ, ν̄, 1/ε},

infIB(x,ε) f ≤ infclRν
kνx
f < sν(x) + ε ≤ max{sν(x),−ρ}+ ε.

Consequently, the first collection of constraints in the definition of d̂l0ρ(s
ν , f) is satisfied with η = ε. We

then have that d̂l0ρ(s
ν , f) ≤ ε for all ν > max{ρ, ν̄, 1/ε}. Since ε > 0 is arbitrary, we conclude that

d̂l0ρ(s
ν , f) → 0 as ν → ∞. By Propositions 3.1 and 3.2, this suffices to establish that dl(sν , f) → 0.

Next, we give a rate of convergence result for epi-splines, which is novel even for IRn. The error in

approximation of a lsc function by an epi-spline is bounded by the “size” of the open sets making up

its partition. Specifically, for a partition R = {Rk}Nk=1 of a nonempty closed set B ⊆ X and ρ ≥ 0, we

define its meshsize as

mρ(R) := inf
{
η ≥ 0 : Rk ⊂ IB(x, η) for all x ∈ B ∩ IBρ and k satisfying x ∈ clRk

}
.

5.9 Theorem (rate of convergence of epi-splines) For a partition R = {Rk}Nk=1 of a nonempty closed

set B ⊆ X and ρ ≥ 0, we have that

for every f ∈ lsc-fcns(B), there exists an s ∈ e-spl(R) such that d̂l0ρ(s, f) ≤ mρ(R).

If mρ(R) > 0, then s can be selected to be rational.

Proof. Let f ∈ lsc-fcns(B). We start with the case of mρ(R) > 0 and set ν̄ > max{mρ(R), ρ}. For

everyRk, k = 1, 2, ..., N , with infclRk
f finite, let qk be a rational number in [infclRk

f−mρ(R), infclRk
f ].

Moreover, let σk = min {ν̄,max {−ν̄, qk}}. For Rk, k = 1, 2, ..., N , with infclRk
f = ∞, set σk = ν̄ and

for infclRk
f = −∞ set σk = −ν̄. We proceed by constructing s : X → IR as follows:

s(x) = min
k=1,...,N

{
σk : x ∈ clRk

}
for x ∈ B, and s(x) = ∞ for x ̸∈ B.

By the same arguments as in the proof of Theorem 5.5, we conclude that s ∈ r-spl(R).

We next establish the approximation error associated with s. Mimicking the lines of reasoning in

the proof of Theorem 5.8, we obtain that infIB(x,η) s ≤ max{f(x),−ρ} + η holds with η = 0 for all

x ∈ X. Next we reverse the roles of s and f . Let x ∈ levρ s ∩ IBρ. Certainly, all k with x ∈ clRk has

Rk ⊂ IB(x,mρ(R)). There exists a kx such that x ∈ clRkx and infclRkx
f ≤ s(x) +mρ(R) due to the

fact that s(x) ≤ ρ < ν̄. Since kx is one of possibly several k for which Rk ⊂ IB(x,mρ(R)) holds, we

obtain that

infIB(x,mρ(R)) f ≤ infclRkx
f ≤ s(x) +mρ(R) ≤ max{s(x),−ρ}+mρ(R).
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We can therefore conclude that d̂l0ρ(s, f) ≤ mρ(R) when mρ(R) > 0. If mρ(R) = 0, the same arguments

hold except that qk could be irrational and s ∈ e-spl(R).

An example illustrates Theorem 5.9. In optimization over X approximations might arise from

approximations of X by a simpler set, say X̂. As seen in Proposition 3.3, the error introduced by this

approximation is largely given by d̂lρ(X̂,X). To make this concrete, let (X, d) = (lsc-fcns(IRn), dl) and

R be a partition of IRn that defines the simpler set X̂ = e-spl(R). We recall from Propositions 3.1 and

3.2 (applied with X = IRn and x̃ = 0) that for f ∈ lsc-fcns(IRn) and s ∈ e-spl(R),

dl(s, f) ≤ (1− e−γ)d̂l0γ′(s, f) + e−γ [max{δs, δf}+ γ + 1] for any γ ≥ 0,

where δs = dist(0, epi s), δf = dist(0, epi f), and γ′ ≥ 2γ + max{δs, δf}. For every f ∈ lsc-fcns(IRn)

there exists by Theorem 5.9 an sf ∈ e-spl(R) such that d̂l0γ′(sf , f) ≤ mγ′(R). Moreover, there exists a

δ > sup{max{δsf , δf} : f ∈ lsc-fcns(IRn) ∩ IBρ}. For every γ ≥ 0 and f ∈ lsc-fcns(IRn) ∩ IBρ, we have

then

dist(f, e-spl(R)) ≤ dl(sf , f) ≤ (1− e−γ)m2γ+δ(R) + e−γ [δ + γ + 1].

Thus,

d̂lρ(e-spl(R), lsc-fcns(IRn)) ≤ (1− e−γ)m2γ+δ(R) + e−γ [δ + γ + 1].

We end the section with an observation that the existence of a locally uniform infinite refinement

is intimately tied to compactness of balls; Proposition 5.7 shows that such compactness is a sufficient

conditions. The fact that it is also necessary when B is complete is stated next.

5.10 Proposition (necessary condition for locally uniform infinite refinement) If there exists a locally

uniform infinite refinement of a nonempty closed set B ⊆ X and B is complete, then every closed ball

in X must have a compact intersection with B.

Proof. By Theorem 5.8, the assumption implies that (lsc-fcns(B), dl) is separable. In view of [10,

Theorem 3.1.4] we know that this takes place if and only if closed and bounded subsets of (B, d) are

totally bounded. Thus, closed balls in X intersected with B are totally bounded. Their compactness

then follows from the assumption of completeness.

Appendix

Proof of Proposition 3.1. Item (i) follows immediately from the definitions. For (ii), first observe

that for a nonempty set C ⊂ X × IR and x̄, ȳ ∈ X × IR we have for any z̄ ∈ C, dist(x̄, C) ≤ d̄(x̄, z̄) ≤
d̄(x̄, ȳ) + d̄(ȳ, z̄). Minimizing over z̄ ∈ C, we obtain that dist(x̄, C) ≤ d̄(x̄, ȳ) + dist(ȳ, C) and thus

|dist(x̄, C)− dist(ȳ, C)| ≤ d̄(x̄, ȳ).

Second, in the notation h(x̄) = | dist(x̄, C)− dist(x̄,D)| for nonempty C,D ⊂ X × IR, we have that

|h(x̄)− h(ȳ)| ≤ |[dist(x̄, C)− dist(x̄,D)]− [dist(ȳ, C)− dist(ȳ, D)]|
≤ | dist(x̄, C)− dist(ȳ, C)|+ |dist(x̄,D)− dist(ȳ, D)| ≤ 2d̄(x̄, ȳ).
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Let ε > 0. For every ȳ ∈ Sρ′ , there exists an x̄ ∈ Sρ such that d̄(x̄, ȳ) ≤ e(Sρ′ , Sρ) + ε. Combining these

last two facts and replacing C and D by epi-graphs, we obtain that

dlρ′(f, g) = sup{| dist(ȳ, epi f)− dist(ȳ, epi g)| : ȳ ∈ Sρ′}
≤ sup{| dist(x̄, epi f)− dist(x̄, epi g)|+ 2e(Sρ′ , Sρ) + ε : x̄ ∈ Sρ} = dlρ(f, g) + 2e(Sρ′ , Sρ) + ε,

which establishes (ii) after realizing that ε > 0 is arbitrary.

Next consider (iii). Suppose that C,D ⊂ X × IR are nonempty closed, ε > 0, and ρ ≥ 0. We first

show that

dist(·, D) ≤ dist(·, C) + ε on Sρ implies that C ∩ Sρ ⊂ D+
ε := {x̄ ∈ X × IR : dist(x̄,D) ≤ ε}.

The claim is trivial if C ∩ Sρ is empty. For nonempty C ∩ Sρ, we have for every x̄ ∈ C ∩ Sρ that

dist(x̄,D) ≤ ε and the implication follows. The translation of this fact to the context of epi-graphs

establishes the lower bound in (iii). Second, we establish that

C ∩ Sρ′ ⊂ D+
ε implies dist(·, D) ≤ dist(·, C) + ε on Sρ for ρ′ > 2ρ+ dist((x̃, 0), C). (8)

For z̄ ∈ C ∩Sρ′ ⊂ D+
ε and x̄ ∈ X × IR, dist(x̄,D) ≤ d̄(x̄, z̄)+dist(z̄, D) ≤ d̄(x̄, z̄)+ ε. The minimization

over z̄ ∈ C ∩ Sρ′ gives that
dist(x̄,D) ≤ dist(x̄, C ∩ Sρ′) + ε. (9)

This holds trivially if C ∩ Sρ′ = ∅. Suppose that x̄ ∈ Sρ and ρ′ > 2ρ+dist((x̃, 0), C). For every ν, there

exists ȳν ∈ C such that d̄(x̄, ȳν) ≤ dist(x̄, C) + 1/ν. Moreover,

d̄((x̃, 0), ȳν) ≤ d̄((x̃, 0), x̄) + d̄(x̄, ȳν) = d̄((x̃, 0), x̄) + dist(x̄, C) + 1/ν

≤ d̄((x̃, 0), x̄) + d̄(x̄, (x̃, 0)) + dist((x̃, 0), C) + 1/ν ≤ ρ+ ρ+ dist((x̃, 0), C) + 1/ν.

Since ρ′ > 2ρ+ dist((x̃, 0), C), there exists a ν̄ such that ȳν ∈ C ∩ Sρ′ for all ν ≥ ν̄. For such ν,

dist(x̄, C ∩ Sρ′) ≤ d̄(x̄, ȳν) ≤ dist(x̄, C) + 1/ν.

Letting ν → ∞ in this expression and observing that dist(x̄, C ∩ Sρ′) ≥ dist(x̄, C) generally, we obtain

that dist(x̄, C∩Sρ′) = dist(x̄, C), which together with (9) establishes (8). The implication in (8) directly

confirms the upper bound in (iii). If (X, d) is proper, then in view of Lemma 2.4 we can take ȳν above

to satisfy d̄(x̄, ȳν) = dist(x̄, C) for all ν. Thus, the need for the 1/ν term vanishes and the stronger

statement given at the end of the theorem is established.

Item (iv) follows trivially from the definition of dlρ. For (v) and (vi), we follow the lines of arguments

in the proof of [24, Lemma 4.41]. Clearly,

dl(f, g) =

∫ ρ

0
dlτ (f, g)e

−τdτ +

∫ ∞

ρ
dlτ (f, g)e

−τdτ.

Since dlτ (f, g) is nondecreasing as τ increases, we have that

dl0(f, g)

∫ ρ

0
e−τdτ ≤

∫ ρ

0
dlτ (f, g)e

−τdτ ≤ dlρ(f, g)

∫ ρ

0
e−τdτ.

21



and

dlρ(f, g)

∫ ∞

ρ
e−τdτ ≤

∫ ∞

ρ
dlτ (f, g)e

−τdτ ≤
∫ ∞

ρ
[max{δf , δg}+ τ ]e−τdτ,

where the last inequality follows (iv). Carrying out the integrations on the left- and right-hand sides,

we obtain (v) and (vi).

The lower bound in (vii) is obtained by letting ρ tend to infinity in (v). Item (vi) with ρ = 0

furnishes the upper bound.

Proof of Proposition 3.2. We start by establishing the finiteness of d̂l0ρ(f, g) for any ρ ≥ 0. Since f, g ∈
lsc-fcns(X), there exist x̄, ȳ ∈ X such that g(x̄), f(ȳ) <∞. Let η̄ = ρ+max{d(x̃, x̄), d(x̃, ȳ), g(x̄), f(ȳ)},
which is finite. Then, for x ∈ levρ f ∩ IBρ, d(x, x̄) ≤ d(x, x̃) + d(x̃, x̄) ≤ ρ + (η̄ − ρ) = η̄ and

thus infIB(x,η̄) g ≤ g(x̄) ≤ η̄ − ρ ≤ max{f(x),−ρ} + η̄. Likewise, for x ∈ levρ g ∩ IBρ, infIB(x,η̄) f ≤
max{g(x),−ρ}+ η̄. Thus, d̂l0ρ(f, g) ≤ η̄, which establishes the rightmost inequality.

Obviously, d̂lρ(f, g) = inf{η ≥ 0 : d̂lρ(f, g) ≤ η}, which in view of the minimization taking place in

the definition of d̂lδρ(f, g) motivates the examination of the relation d̂lρ(f, g) ≤ η for η ≥ 0. It follows

directly from the definition of d̂lρ that

d̂lρ(f, g) ≤ η if and only if dist(x̄, epi g) ≤ η ∀x̄ ∈ epi f ∩ Sρ and dist(x̄, epi f) ≤ η ∀x̄ ∈ epi g ∩ Sρ,

which in turn is equivalent to having(
epi f

)
∩ Sρ ⊂ D+

η (g) and
(
epi g

)
∩ Sρ ⊂ D+

η (f),

where D+
η (f) := {x̄ ∈ X × IR : dist(x̄, epi f) ≤ η} and similarly for D+

η (g). By virtue of being

defined in terms of distance to an epigraph, we have that (x, y0) ∈ D+
η (g) implies (x, x0) ∈ D+

η (g) for

all x0 ≥ y0. Thus,(
epi f

)
∩ Sρ ⊂ D+

η (g) if and only if (x, fρ(x)) ∈ D+
η (g) for all x ∈ dom fρ,

where the function fρ : X → IR is given by fρ(x) = max{f(x),−ρ} if x ∈ levρ f ∩ IBρ and fρ(x) = ∞
otherwise. By definition, a point (x, x0) ∈ D+

η (g) if and only if dist((x, x0), epi g) ≤ η. The latter

condition is more explicitly stated as

inf
{
max{d(x, y), |x0 − y0|} : g(y) ≤ y0, y ∈ X, y0 ∈ IR

}
≤ η.

We are now in a position to establish the lower bound and let δ > 0. Collecting the above facts, we

find that if d̂lρ(f, g) ≤ η, then

inf
{
max{d(x, y), |fρ(x)− y0|} : g(y) ≤ y0, y ∈ X, y0 ∈ IR

}
≤ η for x ∈ dom fρ.

Let x ∈ dom fρ. Hence, for every ε ∈ (0, δ], there exists (yε, y0ε) ∈ X × R such that g(yε) ≤ y0ε,

d(x, yε) ≤ η + ε, and |fρ(x) − y0ε| ≤ η + ε. Consequently, g(yε) ≤ fρ(x) + η + ε and yε ∈ IB(x, η + ε).

Moreover, infIB(x,η+δ) g ≤ infIB(x,η+ε) g ≤ fρ(x) + η + ε. Since this relation holds for all ε ∈ (0, δ],

infIB(x,η+δ) g ≤ fρ(x) + η for x ∈ dom fρ. A parallel development gives identical results with the roles
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of f and g reversed, where we let gρ(x) = max{g(x),−ρ} if x ∈ levρ g ∩ IBρ and gρ(x) = ∞ otherwise.

Specifically, we have that infIB(x,η+δ) f ≤ gρ(x) + η for x ∈ dom gρ. Since x ∈ dom fρ if and only if

x ∈ levρ f ∩ IBρ, we also have that

infIB(x,η+δ) g ≤ fρ(x) + η for x ∈ levρ f ∩ IBρ.

and similarly

infIB(x,η+δ) f ≤ gρ(x) + η for x ∈ levρ g ∩ IBρ.

The lower bound then follows after observing that these relations hold, in particular, for η = d̂lρ(f, g).

Next, we address the upper bound. Suppose that η ≥ 0 satisfies

infIB(x,η) g ≤ max{f(x),−ρ}+ η, ∀x ∈ levρ f ∩ IBρ.

As above, this means that infIB(x,η) g ≤ fρ(x) + η for x ∈ dom fρ. We now examine this relation for a

fixed x ∈ dom fρ. For every ε > 0, there exists a yε ∈ X such that d(x, yε) ≤ η and g(yε) ≤ fρ + η + ε.

Set y0ε = max{g(yε), fρ(x)− η − ε}. Thus, g(yε) ≤ y0ε and

fρ(x)− y0ε ≤ fρ(x)− (fρ(x)− η − ε) = η + ε.

Moreover, |fρ(x)− y0ε| ≤ η + ε. We have therefore established that

max{d(x, yε), |fρ(x)− y0ε|} ≤ η + ε and g(yε) ≤ y0ε.

Since this holds for all ε > 0,

inf
{
max{d(x, y), |fρ(x)− y0|} : g(y) ≤ y0, y ∈ X, y0 ∈ IR

}
≤ η for x ∈ dom fρ.

Equivalently, (x, fρ(x)) ∈ D+
η (g) for x ∈ dom fρ. A parallel development with the roles of f and g

reversed, leads to (x, gρ(x)) ∈ D+
η (f) for x ∈ dom gρ. The implications established in the beginning

of the proof show that we then must have that d̂lρ(f, g) ≤ η. In view of the definition of d̂l0ρ(f, g),

it is possible to repeat the above arguments with η replaced by ην and have ην ↘ d̂l0ρ(f, g) as well as

d̂lρ(f, g) ≤ ην . This established the upper bound of the theorem.

We next consider the last assertion under the additional assumption that the space is proper. Again,

suppose that d̂lρ(f, g) ≤ η and, thus,

dist((x, fρ(x)), epi g) ≤ η for x ∈ dom fρ and dist((x, gρ(x)), epi f) ≤ η for x ∈ dom gρ.

Fix x ∈ dom fρ. By Lemma 2.4 and the fact that epi g is a nonempty closed set, there exists (y∗, y∗0) ∈
X×R, with g(y∗) ≤ y∗0, such that η ≥ dist((x, fρ(x)), epi g) = d̄((x, fρ(x)), (y

∗, y∗0)). Hence, d(x, y∗) ≤ η

and |fρ(x) − y∗0| ≤ η, which leads to g(y∗) ≤ fρ(x) + η and y∗ ∈ IB(x, η). This fact and a parallel

development with the roles of g and f reversed give that

infIB(x,η) g ≤ fρ(x) + η for x ∈ dom fρ and infIB(x,η) f ≤ gρ(x) + η for x ∈ dom gρ.
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Repeating the last lines of reasoning that lead to the lower bound on d̂lρ(f, g), we conclude that under

the additional assumption, the lower bound can be improved to d̂l0ρ(f, g).

Proof of Proposition 3.3. We observe that d̂lρ(C,D) <∞ since C,D are nonempty. Let ρ ∈ [0,∞),

ρ′ ∈ (ρ+ d̂lρ(C,D),∞), and ε ∈ (0, ρ′ − ρ− d̂lρ(C,D)]. Set

ηε = supAρ
|f − g|+max{1, κ(ρ′)}

[
d̂lρ(C,D) + ε

]
.

First, we establish that

infIB(x,ηε){g + ιD} ≤ max{f(x) + ιC(x),−ρ}+ ηε for x ∈ levρ{f + ιC} ∩ IBρ.

Suppose that x ∈ levρ{f + ιC} ∩ IBρ, which of course implies that x ∈ C. There exists a y ∈ D such

that d(x, y) ≤ inf{d(x, y′) : y′ ∈ D} + ε. Thus, d̂lρ(C,D) ≥ e(C ∩ IBρ, D) ≥ dist(x,D) ≥ d(x, y) − ε

and d(x, y) ≤ ηε. Moreover, d(x̃, y) ≤ d(x̃, x) + d(x, y) ≤ ρ + d̂lρ(C,D) + ε ≤ ρ′. These facts and the

Lipschitz continuity of g on IBρ′ imply that

infIB(x,ηε){g + ιD} ≤ g(y) + ιD(y) = g(y) = g(y)− g(x) + g(x)− f(x) + f(x)

≤ κ(ρ′)d(x, y) + supAρ |f − g|+max{f(x) + ιC(x),−ρ}
≤ max{f(x) + ιC(x),−ρ}+ ηε,

which establishes the first claim. Second, following a parallel argument, we realize that

infIB(x,ηε){f + ιC} ≤ max{g(x) + ιD(x),−ρ}+ ηε for x ∈ levρ{g + ιD} ∩ IBρ.

Consequently, d̂l0ρ(f, g) ≤ ηε. Since this holds for arbitrarily small ε > 0, the main conclusion follows.

If (X, d) is proper, then the minimum distance between a point and a nonempty closed set is attained

and the above arguments hold with ε = 0; see Lemma 2.4. This establishes that ρ′ = ρ + d̂lρ(C,D) is

permitted in this case.
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